1.超聲波再生法
活性炭超聲波再生法在活性炭的吸附表面上施加能量,使被吸附物質得到足以脫離吸附表面,重新回到溶液中去。超聲再生的最大特點是只在局部施加能量,而不需將大量的水溶液和活性炭加熱,因而施加的能量很小。
2.電化學再生法
電化學再生法是將活性炭填充在兩個主電極之間,在電解液中,加以直流電場,活性炭在電場作用下極化,一端成陽極,另一端呈陰極,形成微電解槽,在活性炭的陰極部位和陽極部位可分別發生還原反應和氧化反應,吸附在活性炭上的污染物大部分因此而分解,小部分因電泳力作用發生脫附。電化學法的特點是能耗低,其處理對象所受局限性較小,工藝完善,可避免二次污染。
3.超臨界流體再生法
超臨界流體再生法在CO2的臨界點附近,對氨基苯磺酸而言,CO2超臨界流體法再生的最佳溫度為308K,當溫度超過308K時,再生不受影響;當流速大于1.47×10-4m/s時,流速不影響再生;用HCl溶液處理后,會使活性炭再生效果明顯改善。對苯而言,再生效率在低壓下隨溫度的下降而降低;在16.0MPa壓力時的最佳再生溫度為318K;在實驗流速下,再生效率會隨流速加快而提高。超臨界流體再生法特點是再生效率的變化很大;對未被烘干的活性炭,則需要延長其再生時間。
4.溶劑再生法
溶劑再生法是利用活性炭、溶劑與被吸附質三者之間的相平衡關系,通過改變溫度、溶劑的pH值等條件,打破吸附平衡,將吸附質從活性炭上脫附下來。
5.濕式氧化再生法
在高溫高壓的條件下,(一般溫度230°C)用氧氣或空氣作為氧化劑,將處于液相狀態下活性炭上吸附的有機物氧化分解成小分子的一種處理方法,稱為濕式氧化再生法。實驗獲得的活性炭最佳再生條件為:再生溫度230°C,再生時間1h,充氧pO20.6MPa,加炭量15g,加水量300mL。再生效率達到(45±5)%,經5次循環再生,其再生效率僅下降3%。活性炭表面微孔的部分氧化是再生效率下降的主要原因。
6.熱再生法
熱再生法分為干燥、高溫炭化及活化三個階段。
在干燥階段,主要去除活性炭上的可揮發成分。高溫炭化階段是使活性炭上吸附的一部分有機物沸騰、汽化脫附,一部分有機物發生分解反應,生成小分子烴脫附出來,殘余成分留在活性炭孔隙內成為“固定炭”。在這一階段,溫度將達到800~900°C,為避免活性炭的氧化,一般在抽真空或惰性氣氛下進行。接下來的活化階段中,往反應釜內通入CO2、CO、H2或水蒸氣等氣體,以清理活性炭微孔,使其恢復吸附性能。
7.生物再生法
生物再生法是利用經馴化過的細菌,解析活性炭上吸附的有機物,并進一步消化分解成H2O和CO2的過程。生物再生法與污水處理中的生物法相類似,也有好氧法與厭氧法之分。由于活性炭本身的孔徑很小,有的只有幾納米,微生物不能進入這樣的孔隙,通常認為在再生過程中會發生細胞自溶現象,即細胞酶流至胞外,而活性炭對酶有吸附作用,因此在炭表面形成酶促中心,從而促進污染物分解,達到再生的目的。生物法簡單易行,投資和運行費用較低,但所需時間較長,受水質和溫度的影響很大。
再生活性碳的應用:
活性炭目前在環境保護/工業與民用方面已被大量使用,活性炭吸附是個物理過程,采用高溫蒸汽將其內部雜質進行脫副,使其恢復原有活性,有明顯經濟效益。工業中,在廢水三級處理領域有較廣泛應用。如果吸附后的活性炭無法回收,每噸廢水的處理費用將會增加0.83——0.90元外,還會對環境造成二次污染。經二級處理后的廢水首先進入混合槽,然后進入凝聚槽,在氯化鐵、氫氧化鈣及高分子凝聚劑的作用下,使廢水中的懸浮雜質微粒形成沉淀,上層的澄清水用泵送入沙濾塔過濾后,再用泵送入活性炭吸附塔。隨著吸附過程的進行,活性炭的吸附能力會逐漸下降,故要定期將失效活性炭從吸
附塔底部放入失效炭槽,失效的活性炭在酸洗塔間歇的用稀硫酸進行酸洗,然后送入脫水機脫水至40%-50%,脫水后的失效炭經料斗和給料器皿進入沸騰床再生爐再生。再生后的活性炭依次進入再生活性炭接受槽和再生活性炭儲槽。再生活性炭從再生炭儲槽送至吸附塔頂部,用來補充吸附用活性炭,再進行水的處理。再生時,失效上吸附的cod成分和其他雜質變成氣體,經過脫臭爐和濕式氣體洗滌器凈化后由煙囪排出。
活性炭脫酚法適用于處理少量含酚廢水。活性炭脫酚法的特點:設備簡單,操作容易,脫酚率在85-90。但是再生過程復雜,預處理要求高,吸附劑成本較高。