分子印章技術(shù)與打印原位合成在合成原理上相同,區(qū)別僅在于該技術(shù)利用預(yù)先制作的印章將特定的合成試劑以印章印刷的方式分配到支持物的特定區(qū)域。后續(xù)反應(yīng)步驟類似與壓電打印原位合成技術(shù)。分子印章類似于傳統(tǒng)的印章,其表面依照陣列合成的要求制作成凹凸不平的平面,依此將不同的核酸或多肽合成試劑按印到芯片片基特定位點(diǎn)進(jìn)而進(jìn)行合成反應(yīng)。選擇適當(dāng)?shù)暮铣身樞颉⒃O(shè)計(jì)凹凸位點(diǎn)不同的印章即可在支持物上原位合成出位置和序列預(yù)定的寡核苷酸或寡肽陣列。從這一點(diǎn)上講,分子印章原位合成技術(shù)與壓電打印原位合成技術(shù)更為相似。分子印章除了可用于原位合成外還可以點(diǎn)樣方式制作微點(diǎn)陣芯片。例如已有人將分子印章技術(shù)用于蛋白微點(diǎn)陣芯片的制作。 以上三種原位合成技術(shù)所依據(jù)的固相合成原理相似,只是在合成前體試劑定位方面采取了不同的解決辦法,并由此導(dǎo)致了許多細(xì)節(jié)上的差異。但,三種方法合成時(shí)都必需解決的問(wèn)題是必需確保不同聚合反應(yīng)之間的精確定位,這一點(diǎn)對(duì)合成高密度寡核苷酸或多肽陣列尤為重要。同時(shí),由于原位合成每步合成產(chǎn)率的局限較長(zhǎng)(>50nt)的寡核苷酸或寡肽序列很難用這種方法合成。但是,由于原位合成的短核酸探針陣列具有密度高、雜交速度快、效率高等優(yōu)點(diǎn),而且雜交效率受錯(cuò)配堿基的影響很明顯,所以原位合成的DNA微點(diǎn)陣適合于進(jìn)行突變檢測(cè)、多態(tài)性分析、表達(dá)譜檢測(cè)、雜交測(cè)序等需要大量探針和高的雜交嚴(yán)謹(jǐn)性的實(shí)驗(yàn)。