環境分析監測儀器發展的動力來自環境科學的需要。環境科學的特征決定了環境分析監測儀器的特點。隨著環境科學的發展,要求分析監測的是大量基體中濃度越來越低的化學物質;環境污染物中相當大的一部分具有很強的時間性和空間性;化學結構類似的化合物往往對環境污染會有不同的影響。因此,研制靈敏度高、分辨力強、速度快,性能價格比好的分析檢測儀器,是環境分析、檢測儀器研制、開發工作者致力解決的重要課題。具有機動、靈活性的便攜式氣相色譜儀就是適應這種要求而誕生和發展的。便攜式氣相色譜儀的主要性能取決于它使用的檢測器,因此,本文從檢測器的性質闡述、分析幾種常用便攜式氣相色譜儀的主要特征,以便廣大從事環保事業的科技工作者根據實際工作需求,選擇儀器時參考。
一、熱導檢測器氣相色譜儀
熱導檢測器(TCD,thermal conductivity detector)是利用被測組分和載氣熱導系數不同而響應的濃度型檢測器,它是整體性能檢測器,屬物理常數檢測方法。熱導檢測器基本理論,工作原理和響應特征,早在上個世紀六十年代就已成熟。由于它對所有的物質都有響應,結構簡單,性能可靠,定量準確,價格低廉,經久耐用,又是非破壞型檢測器。因此,TCD始終充滿著旺盛的生命力。近十幾年來,應用于商品化氣相色譜儀的產量僅次于FID,應用范圍較廣泛。與其它檢測器相比,TCD的靈敏度低,這是影響它應用于環境分析與檢測的主要因素。據文獻報道,以氦作載氣,進氣量為2ml時,檢出限可達ppm級(10-6g/g)。因此,使用這種檢測器的便攜式氣相色譜儀,不適于室內外一般環境污染物分析與檢測。大多用于污染源和突發性環境污染事故的分析與檢測
二、氫火焰氣相色譜儀
氫火焰檢測器(FID,flame ionization detector)是利用氫火焰作電離源,使被測物質電離,產生微電流的檢測器。它是破壞性的、典型的質量型檢測器。它的突出優點是對幾乎所有的有機物均有響應,特別是對烴類化合物靈敏度高,而且響應值與碳原子數成正比;它對H2O、CO2和CS2等無機物不敏感,對氣體流速、壓力和溫度變化不敏感。它的線性范圍廣,結構簡單、操作方便。它的死體積幾乎為零。因此,作為實驗室儀器,FID得到普遍的應用,是最常用的氣相色譜檢測器。FID的主要缺點是需要可燃氣體-氫氣、助燃氣體和載氣三種氣源鋼瓶及其流速控制系統。因此,制作成一體化的便攜式儀器非常困難,特別是應對突發性環境污染事件的分析與檢測就更加困難,因為它需要點“一把火”,增加了引燃、引爆的潛在危險性。上海精密科學儀器有限公司推出的GC190微型便攜式氣相色譜儀,主要特點是,柱上加熱;溫度范圍為,環境溫度至250℃;微型FID檢測器,靈敏度達5×10-11g/s;線性范圍105,氫氣作載氣。以氫氣作載氣主要問題是,調節載氣流量時,無法控制氫火焰穩定性。
三、電子俘獲檢測器(ECD)
電子俘獲檢測器(ECD)是鹵代烴等電子親和勢較高化合物的選摘性檢測器,靈敏度高。但它使用放射性同位素63Ni,根據我國相關法律,不宜制成隨意移動的便攜式氣相色譜儀。
本文介紹的重點是自上個世紀八十年代迅速發展起來, 在西方科學技術發達國家得到廣泛應用,目前在我國尚未得到很好應用的便攜式氣相色譜儀,它們使用的檢測器是光離子化檢測器(PID,Photo ionization detector )、氬離子化檢測器(AID,Argon ionization detector)、表面聲波檢測器(SAW,Surface Acoustic Wave)。
四、光離子化痕量檢測、分析技術
光離子化痕量檢測、分析技術及其光源的發展Lossing和Tanaka等人在1955年首先闡述了光離子化的原理,當光子能量高于受輻照物質分子的電離能時,該物質可以被電離。1957年Robinson首先將此原理用于實際氣相色譜檢測器,1961年,Lovelock在對色譜分析技術的各種離子化技術的評論中,把光離子化檢測器(PID)與氫火焰離子化檢測器(FID)相比較,顯示出PID是相當有前途的檢測方法。Sawyer 對氣體放電的研究表明,使用惰性氣體放電可以有效地限制放電的輻射波長,使輸出光輻射主要為惰性氣體的共振譜線,因此當時的PID光源大多使用Ar或He氣放電。早期的PID光源與離子化池并不分開,而是在同一空間進行。雖然Lovelock發現放電光源中,置入空心陰極時放電效率和穩定性都有顯著的提高,但由于高效共振輻射出現在低氣壓下,而被分析物質離子化檢測的最大靈敏度則在一個大氣壓左右,這使紫外光源和光離子化池都不能工作在最佳狀態,因此在六十年代PID的研究與應用發展緩慢。